Learning a Feature Transformation to Improve Performance of Clustering and Classification

Xinlei Zhou

Big Data Technology and Application Institute ShenZhen University

2019.03.13

イロト イポト イヨト イヨト

- What's a feature transformation?
- How to transform?

イロト イポト イヨト イ

Introduction

What are our contributions? Have we improved the performance?

Outlines

Vhat's a feature transformation? low to transform?

イロト イヨト イヨト イ

Introduction

- What's a feature transformation?
- How to transform?
- 2 What are our contributions?
- 3 Have we improved the performance?

Outlines

What's a feature transformation? How to transform?

イロト イヨト イヨト イ

- What's a feature transformation?
- How to transform?
- 2 What are our contributions?
- 3 Have we improved the performance?

< ロ > < 同 > < 三 > .

What's a feature transformation:

Feature: the characteristic or prominent aspect of each data **Transformation**: a series of operations, which make something presented in another form

The feature transformation is a data preprocessing technology performing a series of operations to reform the way of feature presented.

How to transform? What's the series of operations? Introduction

What are our contributions? Have we improved the performance?

Outlines

What's a feature transformation? How to transform?

イロト イヨト イヨト イ

• What's a feature transformation?

- How to transform?
- 2 What are our contributions?
- 3 Have we improved the performance?

What's a feature transformation? How to transform?

・ロン ・聞と ・ヨン ・ヨン

E 990

Figure 1: Distribution of Iris data set

Introduction

What are our contributions? Have we improved the performance?

What's a feature transformation? How to transform?

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

æ

Figure 2: Distribution of Iris data set after transform

The distance between different categories increases, while the distance between the same categories decreases, and the separability of data increases significantly.

The **main idea** of our method is to learn a matrix **W** which maps the data onto a new feature space. The data in the new feature space will have better representation for clustering or classification tasks, and we call it **weight-matrix learning (WML)**.

Outlines

Introduction

- What's a feature transformation?
- How to transform?

2 What are our contributions?

3 Have we improved the performance?

イロト イヨト イヨト イ

Contributions and advantages of our method:

1. The mapping between new and old feature spaces is linear.

Suppose that $S \subset R^n$ is a data set containing N n-dimensional column vectors, and is represented as

$$S = \{ \vec{x}_i | \vec{x}_i \subset R^n, i = 1, 2, \cdots, N \}.$$
 (1)

The transformed data set is defined as

$$S_W = \{ \vec{y}_i | \vec{y}_i = W \vec{x}_i, i = 1, 2, \cdots, N \},$$
 (2)

< 口 > < 同 > < 臣 > < 臣 >

where $\boldsymbol{W} = (\boldsymbol{w}_{ij})_{n \times n}$ is a full rank matrix to be determined.

2. The similarity in WML is based on a pseudo-distance, i.e., the square of weighted distance, rather than the distance itself. This improvement reduces the computational complexity of the similarity matrix to some extent.

$$\rho_{pq}^{(W)} = \frac{1}{1 + \beta \cdot d_{pq}^{(W)}}$$
(3)

where

$$d_{\rho q}^{(W)} = d^2(\vec{y_{\rho}}, \vec{y_{q}}) = (\vec{x_{\rho}} - \vec{x_{q}})^T (W^T W) (\vec{x_{\rho}} - \vec{x_{q}}), \qquad (4)$$

 β is a positive parameter determined by solving the following Equation (5)

$$\frac{2}{N(N-1)}\sum_{q>p}\rho_{pq}^{(l)}=0.5$$
(5)

where **N** is the number of objects, $\rho_{pq}^{(l)}$ is the value of $\rho_{pq}^{(W)}$ at W = I, indicating the similarity of the original data.

For the purpose of reducing uncertainty of the similarity matrix, we consider the minimization of the following evaluation function (objective function):

$$E(W) = \frac{1}{N(N-1)} \sum_{q < p} E_{pq}(W)$$

= $\frac{1}{N(N-1)} \sum_{q < p} (\rho_{pq}^{(W)}(1 - \rho_{pq}^{(l)}) + \rho_{pq}^{(l)}(1 - \rho_{pq}^{(W)}))$ (6)

in which **N** is the number of objects, **W** represents the feature weight matrix, $\rho_{pq}^{(W)}$ specified by Equation (3) is the similarity between objects $\vec{x_p}$ and $\vec{x_q}$, and $\rho_{pq}^{(l)}$ is defined in Equation (5).

< □ > < □ > < □ > < □ > <

This evaluation function $\boldsymbol{E}(\boldsymbol{W})$, is constructed based on a simple function

$$f(x,y) = x(1-y) + y(1-x)(0 \le x, y \le 1)$$
 (7)

Noting that
$$\frac{\partial f}{\partial x} = 1 - 2y$$
:
 $\frac{\partial f}{\partial x} > 0$ if $y < 0.5$, $\frac{\partial f}{\partial x} < 0$ if $y > 0.5$.

Therefore, the function f(x, y) with respect to x: is a strictly monotonically increasing function under the condition of fixed y < 0.5 and is a strictly monotonically decreasing function under the condition of fixed y > 0.5.

3. The objective function we designed has ensured the interpretability of the data mapping process, which is impossible for most methods.

We can explain the optimization process of the objective function as follows:

We take 0.5 as a reference center of similarity value for a data set. During the optimization process the similarity deviates from 0.5 and approaches 0 or 1 gradually. That is, **the similarity be-fore the transformation (which is larger than 0.5) larger, and the similarity before the transformation (which is smaller than 0.5) smaller.**

イロト イポト イヨト イヨト

4. We place the WML into a feed-forward neural network in which the stochastic gradient descent or batch gradient descent algorithm or other gradient-based training techniques can be well used.

Figure 3: Network representation WML linear transformation

ヘロア 人間 アメヨア 人口 ア

ъ

Outlines

Introduction

- What's a feature transformation?
- How to transform?
- 2 What are our contributions?
- 3 Have we improved the performance?

< ロ > < 同 > < 三 > .

ъ

1. Classification tasks

We take RWN(Random Weighted Network) and C4.5 to validate the performance of our method in classification tasks.

Data set	$RWN_{original}$	RWN_{FWL}	RWN_{WML}	$C4.5_{original}$	$C4.5_{FWL}$	$C4.5_{WML}$
1	0.9428	0.9360	0.9693	1.0000	1.0000	1.0000
2	0.8983	0.8922	0.9857	1.0000	1.0000	1.0000
3	0.9600	0.9590	0.9694	1.0000	1.0000	1.0000
4	0.9525	0.9435	0.9719	1.0000	1.0000	1.0000
5	0.7890	0.7910	0.7806	1.0000	1.0000	1.0000
6	0.8679	0.8703	0.8692	1.0000	1.0000	1.0000
7	0.7327	0.7216	0.7211	1.0000	1.0000	1.0000
8	0.7946	0.8082	0.8154	1.0000	1.0000	1.0000
9	0.7080	0.7130	0.7184	1.0000	1.0000	1.0000
10	0.9437	0.9421	0.9212	0.9976	0.9976	0.9976
11	0.9083	0.9077	0.8885	1.0000	1.0000	1.0000
12	0.7741	0.7805	0.7840	1.0000	1.0000	1.0000
13	0.7583	0.7711	0.7939	1.0000	1.0000	1.0000
14	0.8278	0.8293	0.8384	1.0000	1.0000	1.0000
15	0.9866	0.9894	0.9937	1.0000	1.0000	1.0000

Note: RWNoriginal is the result of RWN on the original data set; RWNFWL is the result of RWN on data set transformed by FWL; RWNWML is the result of RWN on data set transformed by WML.

Figure 4: Training Accuracy

イロト イポト イヨト イヨト

Data set	$RWN_{original}$	RWN_{FWL}	RWN_{WML}	$C4.5_{original}$	$C4.5_{FWL}$	$C4.5_{WML}$
1	0.9248	0.9333	0.9589	1.0000	1.0000	0.9695
2	0.8759	0.8724	0.9741	1.0000	1.0000	0.9655
3	0.9583	0.9563	0.9658	0.9698	0.9698	0.9623
4	0.9447	0.9447	0.9509	0.9316	0.9316	0.9272
5	0.741	0.741	0.7077	0.7154	0.7154	0.6256
6	0.8709	0.8687	0.8619	0.8179	0.8179	0.7978
7	0.6535	0.6651	0.6465	0.6628	0.6628	0.6465
8	0.7887	0.8113	0.8056	0.8732	0.8732	0.8648
9	0.7065	0.7069	0.7104	0.5922	0.5922	0.6355
10	0.9412	0.9404	0.9185	0.9611	0.9611	0.9392
11	0.8692	0.8795	0.8846	0.8821	0.8821	0.7821
12	0.7656	0.7526	0.7701	0.6974	0.6974	0.6643
13	0.7615	0.7678	0.7931	0.7388	0.7388	0.8085
14	0.8285	0.8252	0.834	0.7576	0.7576	0.7623
15	0.9667	0.9667	0.9833	0.9056	0.9056	0.8361

Note: RWN_{original} is the result of RWN on the original data set; RWN_{FWL} is the result of RWN on data set transformed by FWL; RWN_{WML} is the result of RWN on data set transformed by WML.

Figure 5: Testing Accuracy

▲□▶▲□▶▲≡▶▲≡▶ = ● のへで

Performance analysis:

1. RWN is a **network structure** that reflects the mapping relationship between the feature space of the data and category space. The complexity of the feature space of the data set directly affects the performance of the RWN. Our WML performs a linear transformation on the data, which can reduce the uncertainty of the similarity matrix of the data. Noting that the uncertainty of the similar matrix may be closely related to the complexity of the feature space, decreasing the uncertainty of the similar matrix may reduce the complexity of the feature space. That is, WML may reduce the learning difficulty of RWN. Therefore, our WML can improve the training accuracy and testing accuracy of RWN algorithm.

イロト イポト イヨト イヨ

2. C4.5 is a rule learning algorithm that reduces the information entropy of data by continuously selecting feature segmentation points with high information gain rate. C4.5 does not use the information of the similarity matrix of the data, so theoretically WML can not improve the performance of C4.5, which is consistent with our experimental results.

2. Clustering tasks

We take K-means to validate the performance of our method in clustering tasks. In order to evaluate the clustering results, we select four internal indexes DBI, DUNN, CHI, and SI as the evaluation criteria for clustering.

Data set	DBIo	DBIv	DBIm	DUNNo	DUNNv	DUNNm	SIo	SIv	SIm	CHIo	CHIv	CHIm
1	1.988	1.988	0.532	0.996	0.996	3.396	0.177	0.181	0.625	145.445	159.052	1648.193
2	2.405	2.403	0.786	0.774	0.776	2.365	0.131	0.142	0.492	46.08	48.425	388.516
3	1.124	1.124	0.942	1.411	1.411	1.352	0.309	0.329	0.375	1183.248	1262.696	2777.321
4	1.136	1.136	0.509	1.492	1.492	2.830	0.339	0.385	0.698	313.506	364.093	1288.987
5	1.823	1.823	0.829	1.076	1.076	2.140	0.007	0.189	0.45	4.501	51.434	223.459
6	1.795	1.795	0.362	1.059	1.059	3.036	0.147	0.221	0.952	114.667	192.183	1271.013
7	0.963	1.181	0.777	0.804	0.750	0.706	-0.05	0.382	0.567	24.443	87.751	258.49
8	1.506	1.506	0.898	1.025	1.025	1.744	0.153	0.297	0.473	17.062	120.158	319.602
9	0.933	0.933	0.732	2.027	2.027	2.397	0.016	0.453	0.544	22.062	875.234	1324.064
10	1.021	1.020	0.443	0.937	0.939	0.330	0.293	0.362	0.8	243.433	2900.386	16357.606
11	1.388	1.388	0.907	1.313	1.313	1.596	0.102	0.276	0.574	28.893	84.217	173.415
12	1.608	1.608	0.919	1.154	1.154	1.917	0.261	0.405	0.635	47.515	237.111	615.153
13	2.247	2.247	1.172	0.879	0.879	1.691	0.056	0.13	0.292	461.969	845.81	4561.295
14	1.497	1.497	0.722	1.306	1.306	2.686	0.102	0.233	0.458	905.872	1901.813	11125.043
15	1.305	1.309	0.611	1.360	1.359	1.912	0.292	0.301	0.524	79.804	83.351	525.932

Figure 6: clustering result -> () () ()

Summary:

Through the above analysis, it can be concluded that WML has the ability to improve the performance of similarity-based learning algorithm significantly, which could be proved by accuracy of classification tasks or several clustering indexes.

ヘロト ヘアト ヘヨト ヘ

Thanks!

・ロン ・聞と ・ヨン ・ヨン

E 990